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Abstract

This paper presents an image method algorithm for the
derivation of elastostatic solutions for point sources in bonded
halfspaces assuming the infinite space point source is known.
Specific cases have been worked out and shown to coincide with well

known solutions in the literature.
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Introduction

Point sources (Green's functions are point sources) for some
given (linear) governing differential equations and boundary
conditions are important because of two main reasons. First, any
localized process when viewed from a sufficient distance can be
modelled as some suitably chosen point sources. Second, Green's
functions can be used to reframe the governing differential
equations and boundary conditions in an integral equation form; the
integral equation form can, for example, be used as the basis for
numerically analyzing a large class of problems using the boundary
element method.

This paper presents a new algorithm for the derivation of
point sources of elastostatics in bonded halfspaces assuming the
point source in infinite space is known. The method is similar to
the image method that is familiar when deriving Green's functions
in plane layered media where there is only one unknown scalar field
in the governing equations such as in heat conduction, potential
flow and electrostatics problems. In a sequel paper, the algorithm
is then used to formally derive new Green's functions for any point
source in a region consisting of an elastic layer perfectly bonded
to two elastic halfspaces. Numerical solutions for the displacement
fields of nucleii of strain in an elastic plate are also presented

in the sequel paper.

Background

There ‘are many known Green's functions for halfspace problems
in elastostatics. Most of the known Green's functions are
specialized for a single halfspace having a stress free surface (a
special case of bonded elastic halfspaces when one of the regions

has zero rigidity). Some of these known solutions are briefly




surveyed with occasional comments on the method of derivation.

The most used point source solutions are the point force, the
dislocation and the nuclei of strain (or double couple) solutions.
The point force solution for 2-D plane problems in a halfspace with
a free surface (Mellan 1932), 3-D problem in a halfspace with a
free surface (Mindlin 1936) and 3-D problem in bonded elastic
halfspaces (Rongved 1955) are known. Rongved obtained the Green's
function through the use of the Papkovich-Neuber potentials and
arguments from harmonic analysis; the resulting solution is in the
form of the sum of a point force solution in infinite space and
some point sources at the image point with respect to the interface
plane.

The elastic fields of screw and edge dislocations in bonded
halfspaces were first given by Head (1953 a,b). The screw
dislocation problem is obtained by the method of images (since

there is only one field variable).

There are six nucleii of strain sources. The solution to the
first (double couple in a plane parallel to the free surface) was
given by Steketee (1958), the remaining five sources were given by
Maruyama (1964). Maruyama used image nucleii of strain sources to
cancel the tangential camponent of the surface traction on the free
surface. He then used the Boussinesg solution (in Galerkin vector
representation) and the remaining normal tractions on the free
surface in a Hankel/Fourier transformed space to obtain the rest of
~ the fields afterwhich he transformed the solution back to real
space. This procedure is highly specific to half space problems
with a free surface and cannot be generalized to multiple layered
systems.

Finally, we note the existence of an image method for



perfectly bonded elastic halfspaces in terms of the
Papkovich-Neuber potentials (Aderogba 1977). Aderogba presented the
algorithm for obtaining the four image potentials which involves
maltiple integrations with respect to the coordinate perpendicular
to the interface plane and differentiation with respect to all
three coordinates. The algorithm based on the Hansen potentials
presented in this paper involves 3 potentials only, and only
differentiation of the (infinite space) potentials with respect to
the coordinate perpendicular to the interface plane (as well as
multiplication by scalars) is required to obtain the image
potentials. This distinction is especially important when the image
algorithm is repeatedly applied to obtain the fields due to point
sources in regions consisting of an elastic layer perfectly bonded
to two elastic halfspaces.

Preliminary Considerations

The image method presented in this paper is dependent upon
expressing the displacements in terms of potentials. The specific
potentials employed are the analogue to Hansen's potentials for
elastostatics and dynamics. Unlike Ben-Menahem and Singh (1968) the
potentials are not expanded in terms of eigenfunctions; instead the
algorithm operates directly on the potentials. Note however, that
the eigenfunction expansion technique was used in the derivation of
the algorithm (see Appendix 2).

Specifically, we express the displacement field is expressed
in terms of the Hansen potentials Py Py and ¥y in .the following

maner:

u(h,s,?

PoBr) = N(b,P)) + E(6,h,P)) + M(h,ry)




_!g(h,‘f’l) = wl(x,y,z-h)
(1)

E(blhlrz) =+ 2'e X,Y,Z-h)

b4

OJ.Q!
N,

2

- wz(x,y,z—h)
3
- 2:8:-(z-h) va—z-?2(x,y,z—h)

b_d(h,?s) =v X [ega(x,y,z—h)]

where: v is the gradient operator

v X is the curl operator

A+ u
A + 3u
is the Lame constant

&

A

M is the shear modulus

h is a scalar for shifting the z-coordinate

Note that the potentials ?1’ P2 and Ps have to be harmonic in
order for N, F and M to satisfy equilibrium. The Cartesian
components for the displacements, strains and stresses are given in
appendix 1 of Fares and Li (1986). It is shown in appendix 3 that
zL is associated with the antiplane mode of deformation.

In order for these potentials to be useful, a method to obtain
these potentials given an elastic field satisfying equilibrium is
described below. Note that:



a?rz
v N=v-M=0 v'F=2(1-6)"
az?
vVXN=0
(2)
azr2 - a*rz -
vXF=2(1+5)- e, 2. (1+5) - ‘e
oyaz axdz Y
a’vs - a’vs - ar, .
VXM= e+ e+ ‘e

axdz * oyaz Y  azz 2

Hence for a given displacement field u, the following may be
calculated:

a2P2
vea = 2-(1-6) (3)
oz2
and
- 32P3
(vxu)e, = (4)
az?
The potentials Pz and Ps may be cobtained by integrating (3)
and (4):
. [ [ v-u
Pz = {dzldz—— + z-Fz(x,Y) + Gz(x,y)
J 2-(1-%)
(5)
[ -
Py = jdz|dz[(v x u)-e, + z-F(xy) + Gy{x,Y)

The integration constants Fi's and Gi's are chosen such that




'P2 and ?3 are harmonic in the required region. In addition, all
singularities of the potentials must be in the region where the
source occurs. This is made clearer in appendix 3 when we consider
examples of the use of the algorithm. Finally, once P2 and ¥
determined, whatever remains in the displacement field (see
equation 1) is ascribed to Pl' If the given displacement field does
satisfy equilibrium, the field should be expressible in terms of

these three potentials (see Ben—Menahem and Singh 1968, and Morse
and Feshbach 1953).

3are

The Hansen potentials for a point force, and a line force
perpendicular to the z-direction are given in Appendix 1.

The Algorithm

The algorithm and the notation associated with it can now be
described. Consider two elastic halfspaces perfectly bonded along
an interface plane at z=0 (see figure 1). The material properties
of region 1 are described by Hq and 61, and of region 2 by Ko and

62. Next we define the following:

¥(X,v,2) = P(X,¥,-2Z)

T E U/, (6)
_ (5,+1) b s (5:+1)
Rl -3 Y = 76,417

Note that if ¥ is harmonic then ¥ is also harmonic and hence
can be used as a Hansen potential for N, F and M.

The algorithm sfates that if we have the representation for a

point source in infinite space of elastic constants similar to




those of region 1 at the location x=y=0 and z=h described by the

displacement field:

uO = go(h,6, e

o0

nfr) (7)

then the displacement fields in regions 1 and 2 for a similar point
source in region 1 at x=y=0 and z=h are given by:

1 o) sl 31
B + B( h'61 'ﬁthL)

I
]

(8)
2 2 .2
E = Ll(hl5z 'ERIZL)
where the image potentials may be obtained from the source
potentials with the following cperations:

1_ o L0
Y_DR = F={R( hlalblsl) ER

2l = R.(1)2)

dd

2 _ 0
ﬁR - ZR(hra:bréz 151) ﬁR
2 _ 0
3 2 2 62
-26,(1-a)h-3- | +(1-b) - 45 (1-a)n”
3
I;{R(-h,a,b,s,) = z
3
+(]'.—a) +261(1"a)h'§
a
+a —2(62b—5,a)h-§z—

T.(h,a,b,6;,8,)

0 +b
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(9)

The above operators are denoted by 'R' and 'T' and stand for
'Reflection' and 'Transmission' operators respectively, in analogy
with wave reflection and transmission operators for plane waves in
elastodynamic problems.

We note that:

=1 _ ~ 0 _ . g0
Y_’R = §R( h,a,b,éx) f_R = SR( h,a:blél) fR

and: : (10)

SR(_h’a’b'al ) = g-R('l'hlalb:&x )

1.2 are simple multiplicatives of ﬁo The case

L L’
when _?;g = 0 corresponds to the purely anti-plane problem, and thus,
the algorithm reduces to the scalar image method for that case.

Note that the ¥

The derivation of the above algorithm is given in Appendix 2,
and some sample known solutions are rederived in appendix 3; namely
the screw dislocation in a half space with a free surface and

Mindlin's solution of a point force interior to a halfspace.
Conclusions and further recommendations

A vector image method has been presented, for elastic problems
with planar interfaces. An algorithm has been prese.ﬂted on how to
derive point source solutions for two bonded elastic halfspaces.
Specific cases have been worked out (in appendix 3) and shown to
coincide with well known solutions in the literature. Further
details and sample cases could be found in Fares and Li (1986).
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The method of deriving the algorithm suggests that an
analogous algorithm can be obtained for spherical interface
problems, and 2-D (but not 3-D) cylindrical interface problems in
elastostatics. This suggestion is supported by the existence of a
scalar image method and Hansen potential representations for both

these geometries.

Finally, it would also be of interest to investigate
equivalent algorithms for other governing equations. For example,
elastodynamics and poroelasticity could be potential candidates for
such an investigation. Elastodynamic problems, in particular, do
have Hansen potential representations that have been well
established and used and could be investigated first without the
considerable preliminary formulations that are needed for

poroelastic problems.
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Appendix 1: Sample potentials for some point sources

Point Force:

The displacement field due to a point force at the origin can

be written as:

= 1 1 1
ui = 411’/.1-(1+~6T. [ pl = + 6-pk.xk-xi-? ] (1.1)

. g A 11
where: 6 = A+3u T kT 3-4u

r? = x4+ y? + 22

P; are the magnitudes of the point forces in the

.th .. .
i 'direction

The Hansen potentials for the point force can be obtained by
using (1) and (5):

=_A . X .Y )

53 [ P1'7iz ¥ Py'rag ¥ Py in(rez) ]

p, =L | p X - p L :p .In(riz) ‘ (1.2)
2 2 1 rzz 2 rtz 3 ‘

=n. . Y . X
¥3 =P { Py (1+8) riz P2 (1+5) T ]

where: . B = 1/[4nu- (145)]

Note that if the upper (lower) "sign" of z is chosen in one
expression, the upper (lower) "signs" must be chosen throughout for
all the potentials. Also note that taking r+z (r-z) in the
expressions makes the potentials (but not necessarily the
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displacements) singular when x=y=0 and z<0 (=>0).

Line forces at x = 0 acting on the z = 0 plane

The displacement field due to a line force can be written (for
plain strain) as:

[ § 1 .
[ -, * + . . K. =
and (1.3)
u2 =0
. = A+ _ A
where: a = e s = s
€2 =X + 22
Py and P, are the magnitude of the line forces

The Hansen potentials for the line force can be obtained by
using (1) and (5):

= < . oz 2
‘Pl_.s_ﬂy_5[ pl[zarctan(x)

X-1lnt + (1+85)-x ]

[ z
"Pa'_ z:-1ln¢ - z+x-arctan(;:-) ] }
. U 2y w1 .
Pz = s [ p1 z arctan(x) x-1lnt + (1+86) x]
- ps.[ z:lnt - z + x-arc’can(i) } ]
P, =0
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Dislocations parallel to the z=0 plane:

The displacement due to a dislocation along the y-axis (plane

strain) can be written as:

u, = di-arctan(z) - € -dk-lne
i i3 X ik 2w
4% | —(2pe..d)-1ng + (2ue_ & )-6-% X, —ts
P He ) - 108+ (2pe G )-8 oy 2
for i,k,n=1,8
and: (1.5)
u2 =0
+1 fori=1, k=3
where: € = -1 for i =3, k=1
0 otherwise

ci1 and cl:3 are the slip magnitude of the dislocations

We note that the terms in the second brackets expressing the
displacements are of the form of line force expressions with
equivalent magnitudes of 2/.Jeikd.k and thus their Hansen potentials
are already known. The Hansen potentials for the terms in the first
bracket can be shown to be:

nggglt:et .= 1 d.-|{ z-lnt - z +'x-arcfan(z)
1 . 2n 1 X

- z — ..
+ da-[ z-arctan(E) x-1ln¢ + X ] }
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0]

irst irst
g%'ggket _ gzl*ggket
¥ 2 = b 3 =0

(1.6)
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Avpendix 2: Derivation of the vector image method algorithm

The eigenfunction expansion method for elasticity problems in
layered media was first formulated by Ben-Menahem and Singh 19€8.
We have used this method to derive the algorithm discussed in this
paper. The notation (as far as possible) is the same as in the 1968
reference paper, although some new temporary terms have been
defined in order to simplify the algebra for this specific

implementation,

Any elastic displacement field satisfying the egquilibrium

equations:

viu + [I+A/p)oven =9 (2.1)
can be written as the sum of N, F and M (see (1)).

Using the method of the separation of variables in cylindrical

?, and v, in the form:

coordinates on the potentials ¥,, ¥, 3

v = Z(z)R(r)-F(8)
We get: (2.2)
P = exp(tkz)'Jm(kr)-exp(iime)
where Jm is the Bessel's functicn of the first kind and of mth

order

Reexpressing P., ¥, and ¥, in the above form and carrying out

1" 72
the v and v x and %: operations in (1), we get:

+ 4+ - - + - _- + o+ - - .
{ A ‘N + Am-Nm + Bm'%n + Bm-Fm + Cm-Mm + Cm Mm ] dk

{(2.3)




where:

45

ERS

]

5

and:

EJ*U

EJU:!

El()

In the above expressicns for Em'

18

A;, B; and C; are constant coefficients of N, F and

M dependent on 'm' only.

exp(ikz)-[ iEm + gm }

exp

(ikz)~[ (i1-26kz)~2m - (1i25kz)-§m

exp(ikz)-gm

e”
et

‘Jm(kr)~exp(im9)

oa Ala a2 3
37t % —EE'EE)Jm(“r) exp(ime )
1 9 ) .
T35 e9~3EEQJm(kr)-exp(1me)

{2.4)

B and C_ there is the
=m “m

i

implicit understanding that we can consider either the real or

imaginary components of the expressions seperately.

From the above expressions for the displacements, the

expressions for the tractions at a plane z=constant can be found,

and we rewrite the above as:

=

m

"%
]
18

m
where:

18

v

Od

(o + ) -dk (2.5)
0
(_Iﬁ + IILn)-dk (2.6)
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X P +vy ‘B
m =m m =m

2k-Xm~Em + Zk.Yﬁ.Bm

z -C
m-m
K2y Cn
(2.7)
A -exp(kz) - A -exp(-kz
m SXP SR (k=)
+

+ B - (1-26kz)-exp(kz) + B;'(‘l-25kz)-exp(-"')

=]

-+

A -explkz) + A;-exp(-kz)

+ 3

=

+ B - (-1-26kz) -exp(lkz) + B;-(—1+25kz)-exp(—kz
chemplkz) + C-exp(-kz
o SP m exp(-k=)

+ -
A -p-exp(kz) + A _-u-exp(-kz)

+ B;-ys-(l—zm)-exp(kz) + B_-p5- (1+2kz) -exp(-kz)

+ -
A uexp(kz) - A H-exp(-kz)

+ B;;';J5' (-1-2kz) -exp(kz) + B_-u6- (1-2kz) - exp(-kz)

C,:'#'EXP(kZ) - C_-u-exp(-kz)
(2.8)

R L .
Notice that the u, components are uncoupled from the u in the

sense that the A;, B; coefficients do not affect the g; components

and the C; coefficients do not affect the gﬁ components. We

therefore treat the gi and the g; components seperately when

analyzing a specific problem in terms of the Hansen potentials.
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Consider the specific geometry shown in figure 2.1. The region
consists of two elastic materials seperated by a planar interface.
The matefial elasticity parameters used to characterize the regions
are taken to be y,, 6, and y,, 6,. A point source exists at the
position z=-h. The problem is to find the displacement fields for
region 1 (z<0) and for region 2 (z>0) under the influence of the
point source, such that the displacements and the tractions are

continuous across the interface plane (z=0).

In what follows, we are manipulating gﬁ and gﬁ in equaticn
2.5 for a fixed 'm’', but the 'm' subscript will be dropped for
brevity. First, we express the displacement and traction (on a
z-plane) for (z+h) > O (which includes z=0C) of a point source of
arbitrary nature {using the eigenfunction espansion method and

expressing the m'th component in matrix form) in the following way:

Caey ]| - -1 - 25,k (z+h) T 8%
. o -exp(-k|z+h|)

u(B) +1 -1 + 25,k (z+h) B

T(P) | soky, | 42ku,8, - [142K- (z+h) ]

I(§) J =2k, +2k,4-l,51'[1—2k'(z+h)] J
L o (L
[ u(C) +1 [ Co_}-exp(—klz+h{)

T(C) 'k-/-ﬁ

o}
(2.9)

and we define:
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el 2
S u(B) S u(C)
__.2__. = —1 ______ —-—é— - _1. o et e
s T(P) s T(C)
__g_ ______ 6 JO z=
S T(B)
L 4 d L — ~ J0|z=
(2.10)
Now the elastic fields in region 1 are expressible as:
[ u(p) +1 +1 - 26,k-z 1] at
————— . 17 .exp(kz)
u(B) +1 -1 - 25,k-z B
T(P) +2kp, +2kp, 6, - (1-2kz)
E(E) +2ku, +2k, 6, - (-1-2kz)
L i1 L
[ terms due to the ]
+ point source
| as given above
- 1+ -
u{C) +1 C -exp(kz) terms due to the
—————— = |————— + point source
T(C) +ket, | as given above
1 J
{2.11)

u(P) -1 -1 - 25,kz a%”
, : 5=~ | - exp(-kz)
u(B) +1 -1 + 26,k= B
= L
I(E) +2ku, +2ku,5, - (1+2kz)
E(E) ] -2ky, +2kp,6, - (1-2kz)
2 L
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ORIGINAL PAGE IS
OF POOR QUALITY

(2.12)

Applying the condition that u and Im are to be continuous
(for each m) along the interface plane z=0, we get:

[ +1 +1 +1 1 [ al* [ s,
+1 -1 -1 +1 git S,
sokp, | +2ku,6, | ~2ku, | -2kene, | | 22 | s,

edk | 2w, | 2k | 2o, | LBZ‘J s,
+1 ‘ -1 } [ clt { S,
+lu, i +iy, J ‘[Cz_ ) {—;;—

(2.13)

1+ 2-

) C1+ and A2_, B™ , Cz- by inverting

the 4x4 and 2x2 system of equations. We obtain:

.
Now we solve for A‘+, B

1+ ] [ Y+6, v+6, |
-y~ -v- + +
(_f___ +d/2-7-8, +4/2-v-5, AN TR s1
1+ 16,+1 75,+1
f“— _ 1 +4/2-48,5,-5, | -4/2+16,6,+5, +2k:1, —21\;1 . 82
2- 4 185,+1 v5,+1
_f__ﬁ +786,8,+5, ~-16,6,-6, '2kzl +2_.2J S,
2~ 7+5 T+5
B +1+6 +1+6 et S
L ] L o ! 2]:’,'11 2kPx J L 4 J
[ A1+ [ 1 [
_E___ ) 1 . +v +13J—, , 85
C2—- v+1 -1 +_1 S J
L My | 6

{(2.14)
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where: Y = iy /i,

2:(v+8,) - (v6,+1)

[\
{1

Expressing the S's in terms of 2%, 8% ana %7, amd

simplifying the expressions we get:

alt 0 1-b 1 [ A%
----- —- | -exp(-kh)
gt 1-a| 25, (1-a)-kh | | 8°
AZ‘ a 2¢,a-kh
B2~ 0 b
[ C1+ 1 (1 -1 CO- ] L)
_____ _ 1T s
= = R
o —=
L J L1+
(2.15)
where: as (6,41)/(v4+8,)
(2.16)

o2
n

= (6,+1)/(v:56,+1)

Therefore we find that the displacement field (for a given m)

in region 1 and region 2 can be written as:

u(P) +1 |+1-26,kz o 1-b A

————— = |-— : +|-=5=| -explk(z-h) ]
u(B) +1 |-1-25,kz i-a 261-(1-a)-khJ B

+ [ source terms }



N

-

-1

+1
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%;; }-[ CO-]'exp[k(z—h)] + { source terms }
(2.17)
-1-26,k=z +a | 26,a-kh A%
. . 5= -exp{-k(z+h)]
~1426,kz 0 +b B

g

The u(C) terms

algorithm, however,

manipulated. We now

following mznner:

0/|0/

N

Qs
N

O_
5 ]-[ C }~exp[~k(b+h)]
(2.18)
are in a form from which we can decduce the

the u(P) and 1{B) terms have to be further

try to express the uf

I'g

) and u(B) terms in the

+

+1 |+1-26,k- (z-h)

o>

-exp(k(z-h)]

w
o+

{+1 -1-25,k- (z-h)

41 |41-25,%- (z-h)

-explk{z-h)]

o+

+1 |-1-256,k-(z-h)

(41 ] { A’ }-exp[k(z-h)] [ ]
. € + source terms J

(2.19)

-1 |-1-28,k- (z+h)
cexp[-k(z+h)]

s} mil’

UM

L+1 ~1+25. k- (2+h)
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-1 |-1-26,k- (z+h) A;

+
QJIQJ
|
I

N

+1 |-1+258,k- (z+h) Bb

ZLIt[A;]emthmH

exp(-k(z+h)]

PR
622 +1
L J
Noting that:
At n
_esplk(z-h)] = K explk(z-h)]
oz
and
an n
——HeXP[-k(Z+h)] = (-k) " -exp[-k(z+h)]
3Z
We obtain:
at = (1) 8% BT = (1-a)-a%"
a a
A = 26, (1-a)-h-A°" + 452 (1-a)-h-B”
B, = 26,-(1-a)-h-BO” AZ = —45%.(1-a)-n%.89"
and:

{2.20)

(2.21)

(2.22)

(2.23)

Since the above relations are true for each component of a
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potential, then they must be true for the whole potential and we

get:

if:

then:

and

I
)

0 0 0
- H(-hl}ol) + E(él l—h'}oz) + M(_hlps)

Ic
n
Ic
+
=

-0, . 2 _0
(h, (1-b)-¥,) + ZN(h,~26," (1-a)-h-F))

+ g—__lg(h,+45,2- (1-a) .h.;;g)
2
+ 2 N(h,-4862 (1-a)-12.70)
az? 2
+ E(8,,h, (1-a)F))
+ 2_.9._F(51 Ihl 25& * (l‘a) 'h'?g)
1-v 0
+ MR ¥
(2.24)
9 -
u = N(—h,aP?) + §=§(-h,2-(52b—51a)-h-w2)
+ E(éz I—hleg)
2 0
+ M(‘h:m—"pa)
(2.25)
Noting that:
3 al
—~N(h,cst-*) = N(h,cst-——¢)
az'’ azl
(2.26)
S_F(s,h,cst-¥) = N(h,-26,-cst-2¥) + F(s,h,cst-2=¢)

where: cst is a constant
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We obtain the algorithm given in the main body of this paper
(two minor differences are: i) The statement of the algorithm in
the paper considers region 1 to be at z>0 and hence z=+h instead of
z=-h to be the location of the source point and ii) A formalism in

terms of matrix operators is implemented in the main text).
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Appendix 2: Derive+tion of some sample Green's functions

through the use of the image algorithm

In this section, we consider displacément fields in Cartesian
components for some sample point source problems in a halfspace
with a free surface. The solutions that will be rederived are
readily available (and established) in the literature and hence
serve as an empirical check of the algorithm. In addition, these
specific examples help clarify details of the application of the
algorithm. From the algorithm presented in the main text and from
the examples to follow, it should be clear that many established
elastostatic solutions and new solutions (in part II of this paper)

can be obtained in a systematic fashion.

By considering a halfspace problem with a free surface, we

obtain the following simplifications:

v =20 i-a = -1/6, i-h = -8,
call:
6 =8,
then:
. 2 ]
—2h'i— -5 + 45h2 °
3z 3
§'R(hlalb161) = P\r('Y) = [ 1 }
a el
-1/56 +2h-5§

(3.1)

The following example problems will be ccnsidered:

I. Screw dislocation (Antiplane problem).
II. Point force acting interior to the halfspace with a free
surface (Mindlin's solution).
i) The point force is in the x direction.

ii) The point force is in the z direction.
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I. Screw dislocation (antinlane problem)

For the antiplane problem, all that is required is to obtain
the image potential with respect to the interface plane since the
EL matrix is the identity operator. Also, we notice that getting
the image of a given M type (see main text, particularly equation
8, and with specialization in 3.1) displacement field is equal to
the M displacement field of the image potential describing that

field (i.e. M{h,¥) = M(-h,¥)), and hence we can directly operate on
a given displacement field when using the algorithm for a purely
antiplane problem. This corresponds to the scalar field imzge

method for the antiplane case.
As an example we consider the field due to a screw dislocation
in the plane perpendicular to the x-z plane at location z=h and

3=0. The field due to the dislocation in infinite space is:

u_ = arctan {(z-h)/x] (3.2)

The image field will be ﬁ& which implies that the combined

fields give:
uY = arctan[(z-h)/x] - arctan[ (z+h)/x] (3.3)

Of course this is but a simple application of the scalar image
method.

II. pPoint force acting interjor to a halfspace with a free surface.

For this problem the potentials for the point source in
infinite space are given in gppendix 1. However, we have a choice
of where to locate the singularities of the potentials. Since we do
not want the image potentials to introduce any new sources inside

the halfspace, we choose the infinite space potentials to have all
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their singularities in that halfspace. The following functions will
need to be calculated:

[a a 0] a a2 a2 a2 a?] [0
- = == ¥ vt et Bt BTt BT T Y14 <P
{ox" oy’ 9z 2] axX’ oy’ o0z’ oxoZ' oyoz a~2 1
SherH P S
Z |ox’ 9y 9z] |1 3z dX' dy  az 2

3 | 3 e 62 62 62 . ;O

3Z|ox’ Jy' 9z’ Ixdz’ JIyoz’ 322 2

There are some repetition in the suggested functions to be
calculated since the partial differentiation operations are

commutative when the function is sufficiently smooth.

We note that the potentials to be differentiated are linear

combinations of the following functions:

8
i

x/12 (r+z) ]

’6
]

-[In(r+z)]/2

In addition, we have an antiplane potential for this case

which is a linear multiple of the following function:

Py = ¥/[2:(r+2)] (3.5)

and we will also have to calculate:

)

Now we can perform the required differentiations and we also

2] @
X
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note the following:

(x%2) /[r°- (r+2)] + (x22) /(1% (r+2)2] = x°/r° - X2/[r- (r42)?]
z/[r-(r+z)] = 1/r - 1/(r+=z)

Y2/[r-(r+z)2] = 2/(r+z) -1/r - x2/[r-(r+z)2)

(syz) /[r°- (r+2)] + (xyz)/[r2- (r+2)2)] = (xy)/r° - (xy)/[r- (r+2) ]
=5/2+1/(26) = p-(1+48)/(A+u)
) (3.6)

1) Case when the force is acting in the x direction:

Defining:
rg = x2 + y2 + (z+h)2
We get after simplification and the use of identities similar
to those given in (3.6), but with z replaced by {z+h) and "r"

replaced by 'r." wherever they occur:

2

0
u=u

+ [1/4ﬁ#(1+5)]'[

ex'[ [6/2 + 1/(28) + 1 - 2-(1+5) + (1+6)]/(r2+z+h)
+ [-6/2 - 1/(26) - 1 + (1+6)]-x2/{r2'(r

+ [-1 + (146)]/r,

2

,
+ x2/r2 + 25hz-[1/r2 - 3-x2/r§] J

+ ey-[ [-6/2 -1/(26) - 1 + (1+6)]-(xy)/[r2-(r +z+h)

+ (xy)/rg + 26hz-[-3'x-y/r2] ]

+ ez-[ [-56/2 +1/(25)]-x/[r2'(r2+z+h)]

+ (z—h)-x/rg - 65hz-x-(z+h)/rg }

{3.7)
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Noting that:

6/[4np- (146)] = 1/[16mu- (1-v)]
1/6 = 3-4v
=-5/2+1/(28) = 45 (1-v)-(1-2v)

(3.8)

we find that the above result (3.7) coincides with the solution
first obtained by Mindlin (1936) and shown in Mura (1982).

ii) Case when the force is acting in the z direction:

s

After simplifications we get:

0]
u=u

+ [1/4ny(1+5)]'{

e[ + 1872 - 1/(28)]-x/11,- (rotz+h) ]
x| 2" (T
+ (z—h)ox/rg + 65hz-x'(z+h)/r2 ]
+ éy-_ [6/2 ~1/(26)1-y/[x," (r +z+h)]
3

+ (z—h)-y/r2 + 66hz-y-(z+h)/rg] ]

-~

+ ez-[ [6/2 +1/(26)]/r2

+ [(z+h)2 - 25hz]/r§ + 65hz'(z+h)2/rg ]
(3.9)
Noting the rélations given in (3.8) and:
8/2+1/(25) = 6-[8- (1-0)° - (3-4v)] (3.10)

we find that the above result (3.9) coincides with the solution

first obtained by Mindlin (1936) and shown in Mura (1982).




33

Ficure Captions

figure 1:
2 bonded elastic halfspaces with a point source at z=h.

figure 2.1:
2 bonded elastic halfspaces with a point source at z=-h.
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